
Debugging with Venkman http://www.webmonkey.com/webmonkey/06/20/index3a_p...

1 of 2 7/14/06 11:54 PM

JavaScript
-------------------------

Print
this article for free. 

-------------------------

Pages:
1 Debugging with 

Venkman
2 Stepping up

 

SEARCH: webmonkey the web
JUMP TO A TOPIC:

Choose Topic

 home / programming / javascript /

Debugging with Venkman

Page 2 — Stepping up 

There are three main steps to debugging JavaScript with 
Venkman. First, we make the debugger stop where we think the 
problem lies, then we step through the code and observe it to see 
exactly what's going wrong. Finally, we fix the problem.

The best way to jump into the debugger is to set a breakpoint. A 
breakpoint simply says, "When we reach this line, start 
debugging." Let's set one now.

Open our demo page and fire up Venkman. Look for demo.html in 
the Loaded Scripts pane. Look inside the file by clicking on the 
disclosure triangle and find the countTo function. Double-click that 
to pull it up in the Source Code pane.

See how in the left margin of the Source Code, there are dashes? 
Click the one beside the line that reads:

for (var i = 1; i <= number; i++)

The dash turns into a bright red B, indicating you've set a
breakpoint. You can click it two more times to clear the
breakpoint. (It toggles to an F along the way — this indicates a 
special kind of breakpoint that you don't need to worry about just 
yet.) But leave it be for now and switch back to the regular 
browser window. Click the countTo button and it'll throw you back 
to the debugger, only now you've frozen execution.

Notice that the Local Variables pane now shows our variables: i, 
number, and target. Because "target" is an object, you can dig 
into its properties like you did the source code files.

 

Venkman displaying object properties (Take a closer look)

You can use the debugger's toolbar to control the flow of
execution. The Continue button stops debugging entirely, and runs
the rest of the script. The three Step buttons work in similar ways
— they basically control whether you dive into subfunctions or not.
Step Over skips past a subfunction call, while Step Into delves
deeper. If you get too deep into things, use Step Out to jump up
the next highest function call. If you click Step Out at a function
that was invoked directly by the user, it acts just like the Continue
button.

So go ahead and click Step Into a bunch of times. Watch how the i 
value changes as you loop through the for loop. Pretty nifty, eh? 
You don't have to just sit there. Right-click the value of number 



Debugging with Venkman http://www.webmonkey.com/webmonkey/06/20/index3a_p...

2 of 2 7/14/06 11:54 PM

and choose Change Value. Type in 14 and hit OK, then click 
Continue in the debugger toolbar. Indeed, it counts to 14 instead of 
7. You can use this trick to simulate weird conditions in your 
script, or just to experiment to see how your script reacts.

Digging through an object to find a particular property can be 
cumbersome. Watches provide shortcuts to exactly the sliver of 
information you want to "watch" for. Right-click the empty space 
in the Watches pane and choose Add Watch Expression. Type in 
target.innerHTML and hit OK. When you step through the countTo 
function again, you can watch innerHTML get written to.

Watches can evaluate any kind of expression at all. Add another 
watch, but this time type (i == number). The debugger tells us it's 
false. This is a pretty simple condition, but you could use similar 
ones to track all kinds of things while you step through your code. 
You can even save a set of watches for future reference. Just 
right-click the Values pane and choose Save Watch Settings. The 
item below it, Restore Break/Watch Settings, gets them back. 
Incidentally, there is a matching Save menu item for the 
Breakpoints pane.

Now that I've given you some toys to play with, go ahead and try 
them out with your own code. For more information on Venkman, 
try the official FAQ or even this guide, which goes into more detail 
than I have space for here.

Happy debugging!

Did you love this article? Did you hate it? Think you can do better? 
Send us your Feedback. Feedback submitted here will be 
considered for publication on Webmonkey or Wired News, so if you 
don't want us to print your comments, please say so in your 
email.

 

Wired News: Contact Us | Advertising | Subscribe 
We are translated daily into Korean and Japanese 

© Copyright 2006, Lycos, Inc. Lycos is a registered trademark of Lycos, Inc. All Rights Reserved.
Your use of this website constitutes acceptance of the Lycos Privacy Policy and Terms & Conditions 

[an error occurred while processing this directive] [an error occurred while processing this directive]


